By Length
Full (4-12 min)
Short (1-4 min)
By Date
2024 | 2023 | 2022 | 2021
2020 | 2019 | 2018 | 2017
2016 | 2015 | 2014 | 2013
2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader


A Tour of Flame Nebula

View/Listen
Narrator (April Hobart, CXC): Astronomers have made an important advance in the understanding of how clusters of stars like our Sun form using data from NASA's Chandra X-ray Observatory and infrared telescopes. The data show early notions of how star clusters are formed cannot be correct. The simplest idea is stars form into clusters when a giant cloud of gas and dust condenses. The center of the cloud pulls in material from its surroundings until it becomes dense enough to trigger star formation. This process occurs in the center of the cloud first, implying that the stars in the middle of the cluster form first and, therefore, are the oldest. These new results suggest something else is happening. By studying two clusters where Sun-like stars are forming - NGC 2024 (located in the center of the "Flame Nebula") and the Orion Nebula Cluster - researchers have discovered the stars on the outskirts of the clusters are actually the oldest. The researchers will use this same technique of combining X-rays and infrared data to study the age range in other clusters. In the meantime, scientists will be hard at work to develop other, more complex ideas to explain what they've seen in NGC 2024 and the Orion Nebula Cluster.

Return to Podcasts