By Length
Full (4-12 min)
Short (1-4 min)
By Date
2024 | 2023 | 2022 | 2021
2020 | 2019 | 2018 | 2017
2016 | 2015 | 2014 | 2013
2012 | 2011 | 2010 | 2009
2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader


A Tour of DEM L241

View/Listen
Narrator (April Hobart, CXC): When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a nearby star to endure the blast. A team of astronomers using NASA’s Chandra X-ray Observatory and other telescopes has found evidence for one of these survivors. This hardy star is in a stellar explosion’s debris field − also called its supernova remnant − located in an HII region called DEM L241. An HII (pronounced "H-two") region is created when the radiation from hot, young stars strips away the electrons from neutral hydrogen atoms to form clouds of ionized hydrogen. This particular HII region is located in the Large Magellanic Cloud, a small neighboring galaxy to the Milky Way. The supernova remnant remains hot for thousands of years after the original explosion occurred, and this means that it continues to glow brightly in X-rays that can be detected by Chandra. The data suggest that a point-like source in X-rays is one component of a binary star system. In such a celestial pair, either a neutron star or black hole, which is formed when the star went supernova, is in orbit with a star much larger than our Sun. As they orbit one another, the dense neutron star or black hole pulls material away its companion star through the wind of particles that flows away from its surface. If this result is confirmed, DEM L241 would be only the third binary containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova.

Return to Podcasts